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J .  Phys. A: Math. Gen. 18 (1985) 2937-2955. Printed in Great Britain 

Supersymmetric quantum mechanics and the inverse scattering 

C V Sukumar 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 16 April 1985 

Abstract. The procedures for finding a new potential (1) by eliminating the ground state 
of a given potential (2) by adding a bound state below the ground state of a given potential 
and ( 3 )  by generating the phase equivalent family of a given potential using the supersym- 
metric pairing of the spectra of the operators A'A- and A-A+ are compared with the 
application of the Gelfand-Levitan procedure for the corresponding cases. It is shown 
how the equivalence of the two procedures may be established. A distinction is made 
between the modifications of the Jost functions associated with four different types of 
transformations generated by the concept of a supersymmetric partner to a given Schrodin- 
ger equation. It is shown that the Bargmann class of potentials may be generated using 
suitable combinations of the four types of transformations. 

1. Introduction 

In the preceding paper (Sukumar 1985b, hereafter referred to as I) it was shown that 
by using the idea of a supersymmetric partner to a Hamiltonian function HI of a single 
variable x, it is possible to find another Hamiltonian H2 which has one of the following 
features: either (i) the complete spectrum of H2 is made up of all eigenvalues of HI 
except the ground state of HI, or (ii) the complete spectrum of H2 is made up of all 
eigenvalues of HI and in addition one further eigenvalue which lies below the ground 
state of H I ,  or (iii) the spectrum of H2 is identical to that of HI. It was shown in I 
that in all three cases the eigenfunctions of H I  and H2 for the common eigenvalues 
are connected by a linear differential operator. By repeated application of this pro- 
cedure of either deleting an eigenvalue or adding an eigenvalue or maintaining the 
same eigenvalues it is possible to generate Hamiltonians whose spectra bear definite 
relationships to each other. The inverse scattering theory can also accomplish the same 
tasks through solving either the Gelfand-Levitan or the Marchenko integral equations 
(Abraham and Moses 1980, Nieto 1984, Mielnick 1984). The aim of this paper is to 
elucidate the relationship between the two approaches. It will also be shown that the 
families of potentials generated by the application of supersymmetric quantum 
mechanics are members of the Bargmann class of potentials (Bargmann 1949). 

The radial Schrodinger equation differs from the Schrodinger equation in the space 
[ -00,001 in essential respects. The boundary conditions on the eigenfunctions and the 
allowed singularities of the potential V are different for the two spaces [-CO, M] and 
[0, CO]. In S 2 of this paper the modifications from I introduced by switching from x 
to r are considered and the Jost function modifications corresponding to four different 
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2938 C VSukumar 

types of transformations are studied. Section 3 contains a discussion of the relationship 
of the four types of transformations to the Bargmann class of potentials. In § 4 several 
recent applications of the Gelfand-Levitan procedure for solving the inverse scattering 
problem are considered and it is shown that each of these applications is equivalent 
to an appropriate combination of the four types of transformations generated by the 
algebra of supersymmetry. Section 5 contains the conclusions. 

2. Modifications from Sukumar (198513) 

2.1. The radial Schrodinger equation 

In this paper we consider the radial Schrodinger equation with the Hamiltonian 

1 d2 H = -- -+ V ( r )  
2 dr2 

1 ( 1 + 1 )  
V(r)=- + U(r).  

2r2 

The potential V ( r )  is assumed to be regular, not singular. Specifically, the potentials 
discussed in this paper are restricted to be no more singular than l / r 2  at the origin 
and decreasing at least as fast as 1 /  r2 as r + CO. 

In this paper the term ‘normalisation constant of the eigenfunction’ will be used 
often. This term has a specific meaning in the terminology of the inverse scattering 
theory. All bound-state eigenfunctions are understood to be normalised to unity in 
the usual way to reflect the condition that the total probability of finding the bound 
particle somewhere in space should be unity. However, in the inverse scattering method 
the term ‘normalisation’ is used in a different sense. The regular solution cp of the 
radial Schrodinger equation is defined to be a solution that satisfies the boundary 
condition 

J + l  

lim cp(r, E, I )  = 
r - 0  (21+ l)!!’ 

’ 

The regular solution will grow exponentially as r+co when E is not one of the 
eigenenergies. However, when E is one of the eigenenergies E“’ the bound-state 
eigenfunction, which decreases exponentially as r + CO, is proportional to the regular 
solution 

+(r, E“’, I )  = cucp(r, E“’, I )  ( 3 a )  

where 

G 2 d r = 1  loX 
It is this proportionality constant (Y that corresponds to the ‘normalisation constant’ 
referred to in the inverse scattering method. Throughout this paper the term ‘normalisa- 
tion’ will be used in the sense in which it is used in the inverse scattering theory. The 
term ‘normalisable’ will, however, be used in the usual sense of the word, i.e. jT d r  
is finite. 
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In view of the different types of transformations of the radial equation that will be 
discussed in this paper, the following notations will be adopted. The eigenfunctions 
of H defined in equation (1) are denoted by $"' for the discrete states at energy E'" ,  
the phaseshifts for the continuum states $ ( r ,  E )  for positive energies E = fk' are 
denoted by S(1, k )  and the Jost function by F(I ,  k ) .  The potentials, eigenstates, 
phaseshifts and Jost function after the transformation are denoted by adding a tilde, 
$( r, E) ,  for example. The different types of transformations are distinguished by 
adding a suffix, GI(  r, E ) ,  for example. Successive transformations are indicated by 
adding further suffixes and tildes. 

2.2. Jost function 

The integral representation of the Jost function for a potential U ( r )  with N bound 
states at energies E = E") and scattering phaseshifts 6 ( I ,  k )  at energies E = i k 2  for 
angular momentum 1 is given by (see Chadan and Sabatier 1977, for example) 

The phase of the Jost function is - S ( l ,  k )  while the modulus is given by 

(4) 

where the symbol P stands for principal value. The spectral density for positive energies 
is given by 

Knowledge of the phaseshifts for all positive energies, the bound-state energies E' ' '  
and the normalisation constants C") associated with each of the bound states enables 
the complete determination of the potential U (  r ) .  

2.3. Elimination of the ground state of V 

By the methods of I it can be shown that H defined by equation (1) has a supersymmetric 
partner 

(7 1 fil = H - (d2/dr2) In $'"( r ) .  

Since 

lim * ( O ' ( r )  - r '+' 
r - 0  

H corresponds to the potential 

( l + l ) ( I + 2 )  
2 r2 

Pl(r)  = ( 9 )  

where the singularity at the origin has been separated to show that Pl( r )  corresponds 
to angular momentum ( I +  1). The spectral mapping can be shown using the analysis 
of I to be 

9 m=0,1 ,2 ,  . . .  (loa) 

( lob)  

g \ m )  = E ( m + l )  

$\m) = ( E ( m + l )  - E (  m )  ) - 1 / 2  ~ ; + ( m + l i  
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where 

Extension of the above eigenfunction relation to positive energy states and use of the 
asymptotic forms 

lim $ ( r, E ) - sin[ kr - f IT + 6 ( I, k)] ( 1 l a )  
T’CS 

and 

lim + ( ” ( r )  - exp(-y“’r) 
,-.D 

then gives 

lim $,( r, E )  - sin[ kr - f (  I + 1) T + i l ( I  + 1, k)] (12a) 
r -  X 

where 

$ , ( I+l ,  k ) =  S(1, k)-tan-’(y‘’’/k) 
E = i k 2  and E‘O’ = (fY‘O’2). 

We illustrate this phaseshift relation with an example. When U (  r )  = -b/ r, i.e. for 
the Coulomb potential, it was shown (Sukumar 1985a) that the potential f i ( r )  obtained 
by eliminating the ground state of V ( r )  is also a Coulomb potential. Equation (12b) 
then gives a relation between the Coulomb phaseshifts 6, for the angular momenta I 
and ( I +  1). It is easy to show that equation (12b) leads to 

6,( I +  1, k )  = aC(I, k)  -tan-’[ q / ( I +  l ) ]  ( 1 3 ~ )  

where 

v = b / k .  

This phaseshift relation is satisfied by the well known expression for the Coulomb 
phase shifts which is given by 

r( l+ 1 - i v )  
r( I + 1 + i q )  ’ 

exp[2i6,(1, k)]  = 

Equations ( l o a ) ,  (4) and (5) enable the establishment of the following relationship 
between the Jost functions for the potentials cl(r, I +  1) and  V ( r ,  I ) :  

The principal value integral can be evaluated using the integral relation (Gradshteyn 
and  Ryzhik 1965) 
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Therefore, equations (12b)-(15) give 

k 
( k  - iy"') ' 

- - g,(l+l, k )  
F (  I ,  k )  

Thus the elimination of the ground state of V by the supersymmetric method is 
equivalent to multiplying the Jost function by the factor [ k / (  k - iy'o')] and changing 
the angular momentum from 1 to ( I +  1). 

2.4. Addition of bound state 

The potential with a ground state at E = -if2< E''), i.e. below the ground state 
of V, in addition to sharing all the eigenvalues of V can be constructed by the methods 
of I .  Since the potential in the radial equation can have singularities of the form l / r 2  
the equations in I must be recast in an appropriate form. The regular solution in the 
potential V at energy E denoted by cp satisfies 

lim cp - r '+' 
r - 0  

and lim cp - exp( f r ) .  
r - r  

(18) 

Since the energy E is below the ground state of V, (p is nodeless for r > 0 and may be 
chosen to be positive definite for r > O  (see the appendix). The linearly independent 
solution can be taken to be 

X 

f ( r )  = cp(r) 1 dz/cp2(z). (19) 

It is easy to show that 

l imf(r)  - r-' and lim f (  r) - exp( -7r). (20) 
r-m r-0 

f is one of the Jost solutions (see Newton 1966, for example) defined by a boundary 
condition in the asymptotic region. For energies E < E''', f is also a nodeless function 
and is positive definite (see the appendix). When E is not only less than E''' but also 
less than the absolute minimum of the potential V, the positivity of ( V - E )  guarantees 
that cp and f are monotonically growing functions of r in the directions r = 0 - 00 and 
r = 00 - 0, respectively. When V,,, < E < E''', cp and f are no longer monotonically 
growing functions but nevertheless remain nodeless. These assertions on the behaviour 
of cp and f are shown to be true by explicit construction of cp and f in the appendix. 
The function 

(21) 

is also a nodeless function when O <  6' < ~ r / 2  and l / +  is a normalisable function for 
this range of values of e since 

4 = cp cos 6 + f s i n  6 

and 

lim I 'X  1 / $ = l i m  ,- X l/(cpcos e)-exp(-fr) .  (22b) 

By the methods of I, it is easy to infer that when 0 < 0 < 7 / 2 ,  
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with 

has a ground state at 

p = 

$:O'(r, E, e)  = 1 / G ( r ,  8, e). 
with eigenfunction 

The excited states are given by 

9 m = 0, 1 , 2 , .  . 

2 *  

E $ m + l )  = E ( m )  

$ ; m + l )  = - ( E " ) -  8 ) - 1 / 2 ~ -  ( m )  

where 

If the potential V corresponds to angular momentum I as in equation ( l ) ,  equation 
(22a) then gives 

- - I ( / - 1 )  d2 V2(r, E, e)  =- + U ( r )  -7 In + ( r ,  8, e )  
2 r2 d r  

which shows that F2 corresponds to angular momentum ( I  - 1). It is clear that I must 
satisfy 13 1 for f2 to be free of attractive l / r 2  singularities. Extension of equation 
(256) to the positive energy states and use of the asymptotic forms 

lim r-m $(r, E )  -sin[kr-$l.rr+ S(1, k)]  

lim r - x  * ( r ,  E, e) - exp( f r )  

(1 la )  

( 2 7 )  

then gives 

lim &(r ,  E, e)-sin[kr-f(l-l) .rr+6;(1-1,  k)] 
r - x  

where 

& ( I  - 1, k )  = S (  I ,  k) +tan-'( f / k ) .  (28b) 

Equation (286) shows that all members of the family P2(r, E, e) lead to identical 
phaseshifts for a fixed energy E for 0 < 0 < fn-. Furthermore, since 

equation (256)- shows that for a fixed principal quantum number m, 
limr+o $ i m + l ) (  r, E, 0)  is independent of 6 and  therefore the excited states of f2( r, 8, e) 
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for various 0 have identical normalisations. However, the normalised ground-state 
eigenfunction 

(sin e cos e)’/’ 
cp(cos O+sin e J: dz/cp2) 

$ y ) ( r ,  E, e )  = 

lo* ($io’)2 d r  = 1, 

shows that 

(30b 

(3  1 

Hence the ground-state eigenfunctions of the family of potentials c2( r, E, e) have 
different normalisations, i.e. different proportionalities to the regular solution, although 
they belong to the same eigenvalue. It has been shown that the phaseshifts, the 
eigenvalues and the normalisation constants ,Of the excited states are identical for all 
members of the family of potentials F2( r, B, e), 0 < 8 <in, while the ground-state 
eigenfunctions belonging to the eigenvalue E;’) = have different normalisation con- 
stants for different values of e. Clearly the family p2(r, E, e)  is an example of the 
phase equivalent family first discussed by Bargmann. 

enable the comparison 
to the corresponding Jost functions. From equations (4), (28b) and (16) it is easy to 
show that 

The phaseshifts and the bound-state energies of V and 

2.5. Boundary values of 0 and equivalent potentials 

When the parameter e lies outside the range 0 < 6 < :T, the wavefunction J, in equation 
(21) does not lead to a normalisable l/J,. When -T < 8 < 0 or 7~ > 6 > ;7~, J, vanishes 
at some finite value of r because either sin 0 or cos 8 assumes negative values and 
J:dz/cp’ can take all values from 0 to CO. If J, vanishes at a finite value of r then 
(d2/dr’) In J, diverges at this point. This then would lead to a singular V. However, 
the critical values e = 0 and 8 = 4 7 ~  must be studied separately. 

( a )  When 6 = 0 

lim 4 - r‘+’ lim 4 - exp( r r ) .  (33) 
r - 0  r-Lc 

4 ( r ,  E, 0) = cp 

The vanishing value of i+b at r = 0 shows that l/J, is not normalisable, but 

d2 
lim - In cp - -- 
r - 0  dr2 r2  r - a  dr  

lim 7 In cp - 0. d2 ( I +  1) 
(34) 

The positivity of cp guarantees that there are no singularities in (d2/dr2) In cp for r > 0. 
These conditions ensure that it is possible to find a non-singular supersymmetric partner 
to V. It is easy to show that 
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p3 corresponds to angular momentum ( I  + 1) and has a spectrum identical to that of V: 

m = 0 , 1 , 2  , . . . .  (360) E i m )  = E ( m )  

The eigenfunction relation may be chosen to be 
$ $ m )  = (E")- E) - I /~A;+(~)  

with 

The phaseshifts in the potentials V and q3 are related by 

g3( l+ 1 ,  k)  = 6(1, k)+tan- ' (? /k) .  (37) 

The family of potentials P3( r, E )  for different values of 2 < E''' have identical spectra 
but different phaseshifts for the same energy. Furthermore limr+o $!jm)( r, 2) is different 
for different values of 2, i.e. for a fixed m the normalisation constants of the states 
$:"')(r, E) depend on because of the factor ( E  - E )  in equation (366). Therefore, 
the family of potentials P3(r,  2) for different E do not belong to the phase equivalent 
class. The Jost functions for the potentials V and q3 can be shown to be related in 
the manner 

g3(/+1, k )  k -- - 
F(1, k )  k + i j '  

( b )  When 0 = i.rr 
Iim 9 - r-'  lim $ - exp( - j r ) .  (39) 
r-0 r - c c  

$(r, E, fn-1 =f 

Hence 0 = $ x  does not lead to normalisable l / $  because 1/$ diverges as r + w .  
However, 

d2 
lim 7 l n f =  - 
r - 0  d r  r2 r - =  d r  

lim 7 l n f -  0. 
d2 1 

These conditions, together with the absence of any other singularities of (d2/dr2)  lnf; 
ensure that a singularity-free supersymmetric partner to V may be constructed. Thus 

corresponds to angular momentum ( I  - 1) and has a spectrum identical to that of V: 

m = 0 , 1 , 2  , . . . .  (42a) 

(42b) 

i i m )  = E ( m )  

The eigenfunctions are linked by 
,Jim1 = -(E(m)-E)-l/2-4i$(m) 

with 

The phaseshifts can be shown to be related by 

g4( 1 - 1, k )  = S (  1, k)  -tan-'( j /  k). (43) 
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The family of potentials c4(r, E )  for different values of E have identical spectra, but 
different phaseshifts for the same energy E. q4( r, E )  therefore do not belong to the 
phase equivalent family. The Jost functions for the potentials V and p4 can be shown 
to be related as 

The above discussion for the limiting values of 8 = 0 and 8 = :T shows that the 
potentials V (  r ) ,  C3( r, E )  and q4(r, E )  defined by equations ( l ) ,  (35) and (41), respec- 
tively, have identical spectra. With the restriction that E should be less than the 
ground;state eigenvalue of V, the two families of potentials Q3( r, E )  and q4( r, E )  with 
--CO < E < E'" have been shown to have spectra identical to that of V but with different 
phaseshifts for the different members of each family c3 and c4. 

3. Relation of the four types of transformations to the Bargmann potentials 

3.1. Summary 

I n  Q 2 it was shown that by a suitable factorisation of the radial Schrodinger equation, 
it is possible to discover an underlying supersymmetric algebra. This algebra (Witten 
1981) may be used to generate four different types of transformations of the radial 
Schrodinger equation. The four transformations may be classified as follows. 

(1) T, is a transformation that eliminates the ground state [E" ) ,  I)'"'] of the potential 
V ( r ) ,  changes the angular momentum from I to ( I +  1 )  and leaves the rest of the 
eigenvalue spectrum of V unaltered. T,  also changes the Jost function corresponding 
to V by the multiplicative factor k/(k-iy" ')  where y( ' )=  [-2E(0']"2. The new 
eigenfunctions in the potential (9) are given by equations (10). 

(2) T, is a transformation that adds a bound state [E:'', J:"'] below the ground 
state E(' '> E:") of V, changes the angular momentum from I to ( I -  1 )  but leaves the 
rest of the eigenvalue spectrum of V unaltered. T2 also changes the Jost function for 
V by the multiplicative factor (k  - iT:"))/ k where 7;'' = [-2~$'"]'". The new eigenfunc- 
tions in the potential (26) are given by equations (24) and (25). 

(3) T3 is a transformation that maintains the eigenvalue spectrum of V unaltered 
but changes the angular momentum from I to ( I +  1). T3 also changes the Jost function 
for V by the multiplicative factor k / ( k + i j )  where 7 = [-2E]"' and E < E"'. The 
new eigenfunctions in the potential (35) are given by equations (36). 

(4) T4 is a transformation that leaves the eigenvalue spectrum of V unaltered but 
changes the angular momentum from I' to ( I  - 1). T4 also changes the Jost function 
for V by the multiplicative factor ( k + i T ) / k  where 7 = (-2E)"2 and E < E"'. The 
new eigenfunctions in the potential (41) are given by equations (42). 

In the one-dimensional case --CO < x <a, singularities in the potential at x = 0 are 
not permitted and the physical wavefunctions are defined by boundary conditions at 
x = *-CO. In the case of the radial equation the boundary conditions on the eigenfunc- 
tions at r = 0 and at r = 00 are different. All four types of transformations listed above 
have analogues in the space [-CO,CO] but with the difference that no singularities of 
the type l /x2  should be introduced by the transformations because of the boundary 
conditions usually imposed on $(x) .  The transformations T3 and T4 may be distin- 
guished as follows. 
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Let [(x, E )  and ['(x, E )  be solutions of the Schrodinger equation for V(x) at 
energy E < E''' with the boundary conditions 

For < E"', the solutions [ and 5' are nodeless and satisfy 

lim ['(x, E )  - exp(qlx1) ( 4 6 ~ )  
x+--Oc 

lim [(x, E )  - exp(Tx) 
*-+C€ 

where 

T = (-2E)"2. 

Therefore T3 generates 

and T4 generates 

d2 
dx  

F4(x, E )  = V(x) -7 In ['(x, E ) .  

p3 and q4 correspond to the limiting values a = +a and a = -P  in the discussion in 
I. The correspondence with I may be established by noting that 

In I cp,(x, E )  was assumed to be a nodeless solution in the potential V(x) that diverges 
at both x = +a _and x = --CO. When the potential V is a symmetric function of x, the 
two potentials V3 and q4 are connected by the parity transformation. It is easy to 
show that when V is an even function of x, 

i q x ,  E )  = F4(-X, E). (50) 

The above analysis clarifies the relationship between the transformations in the spaces 
[-a, -CO] and [ O , a ] .  

3.2. Relationship to Bargmann potentials 

It has been shown above that each of the transformations T,-T4 corresponds to a 
multiplication of the Jost function by a specific rational function of k. By repeated 
application of a combination of the four types of transformations in an appropriate 
order, the Jost function of V can be modified by any rational function of k. The 
generation of the Bargmann potentials (Bargmann 1949) corresponds to such a modifi- 
cation of the Jost function. Therefore it is clear that the Bargmann class of potentials 
may be generated by a suitable combination of TI, T,, T3 and T4. For example, the 
multiplication of the Jost function by a factor ( k  + ib j / (  k + ia)  can be broken down 
into the two steps, multiplication by ( k  + ib)/ k followed by a further multiplication 
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by k / ( k + i a ) ,  corresponding to application of T4 followed by T3. The physically 
acceptable Jost functions must satisfy the condition 

lim F(1, k )  = 1 
k - r :  

and the symmetry relation 

F(1, - k * ) = [ F ( I ,  k ) ] * .  (51b) 

The modifications of F introduced by TI- T4 clearly satisfy these conditions. 
The above analysis demonstrates that all physically acceptable modifications of the 

Jost function which are of the form of a multiplication by a rational function of k may 
be accomplished by a suitable combination of the four types of transformations Tl- T4. 
In the next section the relationship of these transformations to the Gelfand-Levitan 
method (Gelfand and Levitan 1951) is studied. 

4. Some recent applications of the Gelfand-Levitan procedure 

4.1. Elimination of the ground state by the Gelfand-Levitan procedure 

Abraham and Moses (1980) have applied the Gelfand-Levitan method to eliminate 
the ground state of V at energy E"' without altering all the other bound-state energies, 
the normalisation constants and the spectral density for positive energies. Equation 
(6) shows that the spectral density for positive energies is governed only by the modulus 
of the Jost function. Hence elimination of a bound state without altering the spectral 
density for positive energies corresponds to the modification of the Jost function in 
the manner 

(see Chadan and Sabatier (1977, p 55) for example). The angular momentum is also 
assumed to be unaltered by the transformations discussed by Abraham and Moses. 
The analysis in § 3.1 shows that the transformation implied by equation ( 5 2 )  may be 
achieved in two steps. 

Step 1. Eliminate the ground state of V by a transformation of type T1. Starting from 
the potential defined in equation ( l ) ,  T,  then generates 

After application of T ,  the modified eigenstates and phase shifts are given by equations 
(10) and (12). The modification of the Jost function is given by 

k - - F,(l+l, k )  
F(I ,  k )  (k-iy"') '  (17) 

ql corresponds to angular momentum ( I +  1). 
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Step 2. To reduce the angular momentum from ( I  + 1) to I without altering the spectrum, 
a suitable transformation of type T4 can be found by choosing the energy E in the 
transformation equations for T4 to be equal to E''', the ground-state energy of V. 
T4( E''') applied to the radial equation for el generates 

- 
where jl( r, E''') is the Jost solution in the potential el at energy E"'. corresponds 
to angular momentum 1. T4 leads to the following modification of the Jost function: 

;l,4( 1, k)  - ( k  + iy"') 
Fl ( 1 f 1, k ) - k '  

Equations (17)  and (54) show that 

k)  - (k+iyio ' )  
F(1, k) -(k-iy"') 

(54) 

( 5 5 )  

which is identical in form to the expression obtained by the Gelfand-Leviian procedure, 
equation ( 5 2 ) .  I t  will now be explicitly demonstrated that the potential is identical 
to the potential obtained by the Gelfand-Levitan procedure. 

enables a simple construction of the 
regular solution G I  and the Jost solution f l  for the potential e, at the energy E''' < E!'). 
As shown in the appendix, 

The supersymmetric pairing of V and 

G1(r, E ' " ) a r  1' ( $ ' o ' ( z ) ) 2  dz ( 5 6 a )  CL ( r )  0 

. rnr 

Equations (53), (566) and (1) show that 
nr d2 t 1 , 4 ( r )  = V( r )  -- In( ($'''( z))' dr). 

d r2 r 
(57) 

After the application of the two transformations TI  and T4 the resulting spectrum is 

and 
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Equation (58b) can be simplified to the form 

The phaseshift relation is 

il,4(l, k) = 6(1, k ) - 2  tan"(y'"/k). (60) 

It is clear that lim,,o 3::' = Iimr+' + ' m C 1 )  showing that the bound-state normalisa- 
tions are unaltered by the transformations. The expressions for the new eigenfunction 
GI,,  and the new potential cl.4 are identical to the results quoted by Abraham and 
Moses (1980). To establish this identity, it must be noted that the Wronskian between 
+IoJ and +("'+I)  may be written using the Schrodinger equation at the energies E''' 
and E'"'+') in the form 

This completes the proof that the application of Gelfand-Levitan procedure to 
eliminate the ground state without changing the angular momentum is completely 
equivalent to a transformation TI, which eliminates the ground state but changes the 
angular momentum from I to ( I +  l ) ,  followed by a transformation T4 which changes 
( I  + 1 )  to 1 without changing the spectrum. 

4.2. Addition of a bound state below the ground state of V by the Gelfand-Levitan 
procedure 

The Gelfand-Levitan equations can be used to introduce a new bound state at energy 
< E'') without altering all the other bound-state energies, normalisation constants, 

spectral density for positive energies and angular momentum. Addition of a bound 
state at E = i T 2  without altering the spectral density for positive energies corresponds 
to the modification of the Jost function given by 

The analysis in 9 3 shows that the transformation implied by equation (62) may be 
achieved by two steps. 

Step 1. Apply a transformation of type T 3 ( E )  with the choice of energy E = E. T3 
changes 1 to ( I +  1 )  but leaves the spectrum unaltered. Starting from the potential 
defined in equation ( l ) ,  T3 generates 

( 1 +  1)(1+2) 
2 r2 

P3(r) = (35) 

where p( r, E )  is the regular solution in V for the energy E < E"'. After application 
of T3 the modified eigenstates and phase shifts are given by equations (36) and (37). 
The modification of the Jost function is given by 

F3(1+i, k) k -~ - 
F(1, k) ( k + i j ) '  
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Step 2. Add bound state to Q3 at E by a transformation of type T2 which reduces the 
angular momentum from (1 + 1) to 1. T2 applied to the radial equation for Q3 generates 

where G3 is a solution in the potential Q3 such that l/G3 is normalisable and 0 is the 
parameter, with the allowed range of values 0 < 0 < +T, that controls the normalisability 
of l/G3. After the application of T2, the following equations result: - 

E::; = E (64a) 

$yi (r ,  E, e )  = l / ~ ~ ( r ,  E, e) (646) 

and 

Equations (38) and (64c) show that 

k 2 U ,  k )  ( k - i j )  
F(1, k) - ( k + i ? )  

which is identical in form to equation (62). It will now be shown that an appropriate 
choice of 8 leads to expressions identical to those derived using the Gelfand-Levitan 
procedure. 

It is easy to show from equation (35) that one of the solutions in the potential c3 
at energy E is given by 

1 
61 =-* (660) 

cp(r, E )  

The second linearly independent solution is given by 

The solution G3 is expressed in terms of the regular solution G 3  and the Jost solution 
f 3  in the potential F3 at energy E as 

G3(r ,  E, e)  = G 3 ( r ,  E )  cos e + f 3 ( r ,  E )  sin e. (67) 

6 3  5 2  (68a) 

By studying the limiting behaviour of cp, &, t2, G3 and f 3  it is easy to establish that 

f3a51. 

Equations (646), (67), (68) and (66) then show that 

where 
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Equation (69) shows that 0 = :T corresponds to the choice of the normalisation constant 
for the ground state as 1. For 8 = :T, equations (63), (67), (68) and (66) show that 

d2 
t3,2(r, E, ar) = V(r) -- In( 1 + 1; cp2(x, E )  dx) 

d r2 

where 

and 

Equation (71a) can be simplified to the form 

The phaseshift relation is 

S;,~(Z, k ) =  6(1, k)+2  tan- '(?/k).  (73) 

It is easy to show that lim,,,, $:Tn ,+ ' )  = 1imr+" (I/("'). Thus the normalisation o,f the 
eigenstates of V are left-unaltered. The expressions for the new eigenfunctions $!;+I) 

and the new potential V3,2( r, E, $T) are identical to the results cited in Abraham and 
Moses (1980). 

The family of potentials 9 3 , 2 (  r, E, e )  in equation (63) lead to identical phaseshifts 
as the 8 independence of equation (65) clearly shows. It is easy to show that the 
normalisation constants for the excited states of the potentials v3.>( r, E, e )  for various 
values of the parameter 8 in the range 0 < 0 < +T, are the same. Equation (69) shows 
that the pqameter 8 affects the normalisation of the ground state. The family of 
potentials V3,2( r, E, e )  therefore have identical spectra, identical phaseshifts and iden- 
tical normalisation constants for the excited statesabut have different normalisation 
constants for the ground state. Hence the family V3,2( r, E, e ) ,  0 < 8 < &r is a 'phase 
equivalent family'. It would also be possible to obtain an expression for the eigenfunc- 
tions for a particular value of 8 directly in terms of the eigenfunctions for another 
value of 8. This question will be studied in the next subsection. 

In this subsection it has been shown that the Gelfand-Levitan procedure for the 
addition of a bound state without changing the angular momentum is completely 
equivalent to a transformation T3 which does not alter the spectrum but changes 1 to 
( I  + 1) followed by a transformation T2 which adds the new bound state and changes 
(1+1) to 1. 
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4.3. The phase equivalent family 

The procedure for generating the phase equivalent family corresponds to leaving the 
Jost function unaltered but changing the normalisation of one or more states. The 
change of normalisation of the ground state can be accomplished in two steps. 

Step 1. A transformation of type TI can be used to eliminate the ground state and 
change the angular momentum from 1 to ( I +  1 ) .  Starting from the potential in equation 
( l ) ,  T ,  generates 

( 1 +  1)(1+2)  
2 r2 

P l ( r )  = ( 9 )  

and leads to the modification of the eigenstates and phase shifts given by equations 
(10) and (12) .  The modification of the Jost function is given by 

k - - F l ( l + l ,  I )  
F(1, k) (k-iy"') 

Step 2. A transformation of type T2 that adds a bound state at 
( I  + 1 )  to I can now be applied to the radial equation for PI to generate 

= E"' and changes 

where G1(r, E"', 0 )  is a solution in the potential PI at energy E"'< E!'' that leads to 
normalisable l /Gl .  T2 leads to the following equations: 

* 

Fl,2( 1, k )  - (k - i y" ' )  

Equations (17) and (75c)  show that 

Fl ( I + 1,  k) - k '  

The solution J1 is given by 

Gl(r,  E"', e )  = Gl(r ,  E'' ') cos e+f l ( r ,  E") )  sin e (77) 
where 4, is the regular solution in PI at energy E"' and jl is the Jost solution in PI 
at the same energy. Using equations (A6) and (A9) from the appendix, it is easy to 
see that . r r  

Equation (77)  may then be written in terms of the parameter A defined by 

tan 0 = l / ( h  + 1 )  (79)  
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by using equation (78) in the form 

1 + A j: (+(”( x ) ) ~  dx 
r>  

J1(r, E‘’’, A )  = a> A > -1. 

* * 

Using equations (74)  and (80) it is easy to see that L..e potential is given -y 

d2 
dr2  

e 1 , 2 ( r )  = V ( r )  -- In( 1 + A j: (+‘”(x))’ dx) 

with the normalised ground state, obtained from equations (75b) and (80),  

The excited states after the application of the two transformations are given by - 
m = 0 ,  1 , 2 , .  . . (83a)  $\:+I)(,., A )  = - ( ~ ( m + l ) -  E(o))-IA-A- ( m )  

2 I +  

where 

which can be simplified to the form 

The phaseshift relation is 

k) = a(/ ,  k ) .  

It is easy to see that 

- - 
These results show that the family of potentials r, A )  in equation (81) form > A > -1 
have identical spectra, identical phaseshifts and identical normalisation constants for 
the excited states but have different normalisation constants for the ground state. 
Hence the family of potentials f l , z ( r ,  A ) ,  ,”> A > -1 belong to a phase equivalent 
family. The expressions for e,,?( r, A ) and +\:I( r, A ) are in agreement with the results 
obtained by the Gelfand-Levitan procedure for changing the normalisation constant 
of the ground state (Abraham and Moses 1980). 

We have shown that the Gelfand-Levitan procedure for changing the normalisation 
of the ground state without changing the angular momentum is equivalent to a 
transformation of type TI followed by a suitable transformation of type T2. 
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5. Conclusions 

In this paper it has been shown that the algebra of supersymmetry can be used to 
define four different types of transformations of the Schrodinger equation. These 
transformations taken together may be viewed as the building blocks by which the 
Bargmann class of potentials may be constructed. The four types of transformations 
have enough flexibility to allow the modification of a Jost function by any rational 
function of k. The simple applications of the Gelfand-Levitan equations such as the 
addition of a new ground state or the elimination of the ground state or the changing 
of the normalisation of the ground state may all be viewed as being made up of a 
suitable combination of the four types of transformations. The procedure for solving 
the Gelfand-Levitan equations for the above mentioned examples is straightforward. 
Nevertheless it is instructive to show that the same results could be derived from 
different points of view. In the applications discussed in the text, the representation 
of the new eigenfunctions in terms of a sequence of linear operators acting on the old 
eigenfunctions is a new representation. The question of the relation between the inverse 
scattering theory and supersymmetry has been raised recently (Nieto 1984). The 
analysis given in this paper clarifies the relationship between the two approaches. 

In these two papers we have shown that the simplest representation of the super- 
symmetric algebra enables a fuller understanding of all one-dimensional quantum 
systems and provides a simple picture of certain aspects of the inverse scattering theory. 
Study of other representations of the algebra of supersymmetry would be fruitful. 

Appendix 

To find the regular and the Jost solutions q l  andf ,  in the potential VI at an energy 
E which is less than the ground-state energy El”, we can imagine that V,  is constructed 
by the elimination of the ground state [ E ,  141 of a potential V by using the supersym- 
metric procedure for the elimination of the ground state, i.e. 

d2 
dr2 

VI = V - - In t,b 

where $ is nodeless for r > 0 and satisfies 

-- d2*-2( V - E ) + .  
dr2 

A solution of 

-- d2*1 - 2( VI -E)* ,  
d r2 

with V given by (Al)  is 

*I = I / *  (‘44) 
as can easily be verified by direct calculation. A second linearly independent solution 
of (A3) is then given by 

[ ‘dz /+;=( l /+)  [ r 4 2 d z .  ( ‘ 4 5 )  
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By construction I' $'dz is positive definite. From 
linear combinations 

and we can construct the 

which are nodeless for 0 < r < m. If 

lim IC, - exp( - y r )  y = (-2E)"Z (A71 
r-oc 

lim IC, - r' 
r - 0  

then it is easy to show that 

lim t1 - r f+'  lim - exp( y r )  

lim t2 - r-' 

r - 0  r-m 

lim t2 - exp( - y r ) .  
r - 0  T - X  

Comparison with the limiting behaviour of the regular and Jost solutions (see equations 
(18) and (20) in the main text) shows that 

(01 OC 61 fl 52. (A9) 

The above construction of p1 and fl demonstrates that p, and f ,  are positive definite 
for O < r < c o .  
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